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ABSTRACT: Automatic process modelling (APM) is an enabling technology for the development of smart 

fabrication systems (IMSs). The analysis of obtained models enables the prompt identification of error-prone 

measures and the design of effective mitigation strategies, from parameter optimization to the production of 

tailored staff training, in all aspects of the manufacturing process. In this work as propose a Time Delay Neural 

Network (TDNN) applied to low-level data for the automatic recognition of various process phases in 

collaborative industrial tasks. As selected TDNN because, while retaining computational performance, they are 

suitable for modelling time dependent processes over long sequences. As acquired two novel datasets reproducing 

a standard IMS environment to experimentally evaluate the recognition efficiency and the generalization 

capability of the proposed process. Datasets (including manually annotated ground-truth labels) are publicly 

accessible to allow other methods to be evaluated on them, replicating a standard environment for Industry 4.0. 

The first dataset replicates a collaborative robotic system in which a human operator communicates with a robotic 

manipulator while performing a pick and place function. The second package is a human tele-operated, aided 

robotic manipulation for assembly applications. The results obtained are superior to other literature methods, 

and indicate an improved computational efficiency. 
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INTRODUCTION 

The emergence of Industry 4.0 (I4) has introduced new modes of production to allow greater 

flexibility in processes without penalizing cost and performance. According to one of I4's nine 

implementation pillars is collaborative robots that help human operators manage different stages 

of the production process. The collaborative model represents one of the development goals to 

be achieved in I4, achieving the best outcome of quality and performance while optimizing 

flexibility. Achieving these targets is very difficult because, on the one hand, as need to optimize 

robotic and development parameters while, on the other, achieving the best human-operator 

efficiency possible without penalizing ergonomics and user experience [1], [2]. Flexibility is one 

of the key survival needs in today's competitive markets, particularly for small and medium-sized 

enterprises (SMEs), but the implementation of collaborative robots encounters challenges related 

to management and incorporation in the industrial environment. From this the lack of empirical 

literature on the simulation of collective industrial activities follows. Automatic process 

modelling (APM) can promote the introduction of collaborative robot in small and medium-sized 

enterprises by offering a more abstract and user-friendly understanding of collaborative systems 

and easier introduction with decision taking and intelligent manufacturing systems. 

The use of low-level data is consistent with I4 guidelines reflecting a growing proliferation of 

cyber-physics systems, and providing easy access to heterogeneous data. Automatic 

collaborative system process analysis enables the timely identification of error-prone measures 

and the design of effective mitigation strategies [3]covering all aspects of the operation, from 

parameter optimization to predictive maintenance. Automatic process modelling (APM) can 

promote the introduction of collaborative robot in small and medium-sized enterprises by 

offering a more abstract and user-friendly understanding of collaborative systems and easier 

introduction with decision taking and intelligent manufacturing systems. 

The use of low-level data is consistent with I4 guidelines reflecting a growing proliferation of 

cyber-physics systems, and providing easy access to heterogeneous data. Automatic 
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collaborative system process analysis enables the timely identification of error-prone measures 

and the design of effective mitigation strategies, covering all aspects of the operation, from 

parameter optimization to predictive maintenance. TDNNs were successfully applied to the study 

of heterogeneous data (e.g., kinematic data of low dimensionality, images, and videos). As 

acquired two novel datasets reproducing an I4 IMS setting in order to experimentally test the 

recognition efficiency and the generalization capability of the proposed APM process. Publicly 

accessible data sets (including video recordings, low-level sensor data and ground-truth 

annotations) to allow benchmarking of methods [4], [5]. The first dataset replicates a 

collaborative robotic system in which a human operator participates in a pick-and-place role with 

a robotic handler. The TDNN results are superior to other methods available in literature 

maintaining a reasonable computational cost. The proposed method and novel datasets are key-

components in the development of future IMS with advanced situation awareness capabilities. 

METHOD 

As will first define our TDNN-based approach then present another three supervised APM 

algorithms that are used as benchmarks. Various methods and datasets allow us to compare the 

proposed network's ability with the affine standard approaches. 

Time-delay neural network: 

The proposed TDNN has a pyramidal structure which gives them a wider temporal context, i.e. 

the initial transformations are learned on the values of narrow ranges and the deeper layers 

process the hidden activations from a wider temporal context due to node dilation as shown in 

Figure 1. Since the convolutions occur in the time axis, stacking layers with and increasing 

dilatation rate allows the model to learn wider temporal relationships, resulting in a higher 

abstraction of the feature. Lower layers of the network are modified during back-propagation by 

a gradient accumulated over all the time steps in the temporal sense of the input. 

 

Figure 1. TDNN network architecture 

Other methods: 

In temporal modelling, as benchmark the proposed TDNN with other 3 methods focused on 

different approaches: Long-Short Term Memory (LSTM), Support Vector Machine (SVM) and 

Random Forest (RF) [7]–[8]. Such methods were chosen because, as stated, they prove effective 

in industrial supervised task modelling. 

LSTM architecture is an important part of recurrent neural networks. LSTM has been commonly 

used in speech recognition and temporal dependence capture using parameters that measure past 

cell incidence on present state. Back Propagation through Time (BPTT) recalculate the gradient 

for each step with respect to the weights and sum it up over time stages. In temporal modelling, 

as benchmark e proposed TDNN with other 3 methods focused on different approaches: Long-
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Short Term Memory (LSTM), Support Vector Machine (SVM) and Random Forest (RF). Such 

methods were chosen because, as stated in, they prove effective in industrial supervised task 

modelling. 

LSTM architecture is an important part of recurrent neural networks. LSTM has been commonly 

used in speech recognition and temporal dependence capture using parameters that measure past 

cell incidence on present state [9]. Back Propagation through Time (BPTT) recalculate the 

gradient for each step with respect to the weights and sum it up over time stages. 

Fig. 2. (a) The hardware training console used by one of the students during data 
acquisition. (b) Example of the Virtual task considered in the VIT-MR dataset: four 
coloured rings need to be placed in the corresponding peg. (c) ICRT dataset setup. 

Virtual Industrial Task Master-slave Robot dataset: 

VIT-MR (Virtual Industrial Task Master-slave Robot) dataset was developed to replicate all the 

steps typical in high precision small-scale manufacturing of robotic assisted tele-operated 

manipulation processes. The user controls Leo master console remote slave manipulators (BBZ 

srl, Verona, Italy) seen in Figure 2a, a lightweight hardware system that combines two 

manipulators of maters, a high-definition stereo monitor and a foot pedal tray. The console 

ensures an interactive user interface which allows control of ergonomic slave manipulators and 

enhanced magnified vision. Simulated slave manipulators, visible in Figure 2b provide high 

dexterity and scaling of movement to ensure accurate and stable manipulation of components 

during assembly process. 

As used a research version of Xron (BBZ srl, Verona, Italy), a realistic virtual simulator suitable 

for high fidelity applications, such as medical training, to incorporate simulated environments. 

As used this experimental setup because it is able to replicate kinematic variables very close to a 

real industrial robotic master-slave environment. The function of manipulation involves putting 

a set of coloured rings in their proper position on a peg board, as shown in Figure 2b. The exercise 

consists of raising a ring with one of the robotic arms, moving the ring onto the other robotic 

arm, and putting the ring in the appropriate position. 

In this study was enrolled a group of 17 users with no specific experience in robotic aided 

manipulation. Both consumers have no prior experience of more than one hour using similar 

robotic systems. That topic had a one-hour time slot, the first half is devoted to practice with the 

actual platform, and the second half is devoted to the reported trials. Growing topic conducted 

from a minimum of ten to a maximum of twenty trials which resulted in a total of 256 sequences. 

Multiple users with varying levels of experience allow the model to be resilient to the difference 

in execution of movements and to better identify transitions of phases. 
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The dataset consists of synchronized stereo images, kinematic variables for the two slave 

manipulators, and other variables of device status. 16 variables are available for each slave 

manipulator: Cartesian position, rotation matrix, and angle of grabbing method as shown in Table 

1. Those variables represent all of the system's raw data. As ruled out images to avoid pre-

processing data. The phases annotated manually are six, and are listed in Table 2. They provide 

classification of errors that occur during execution of tasks to better explain results unique to the 

user. The dataset and associated extensive documentation can be found at 

gitlab.com/altairLab/VIT-MR.git. 

Industrial Collaborative Robot-human Task dataset: 

ICRT (Industrial Collaborative Robot-Human Task) data set includes the use of four devices for 

human operator interaction and a collaborative robot interaction. A Leap Motion system 

(LeapMotion, US), an ArUco marker, an Intel RealSense D415(Intel, US) camera and a Panda 

robot (Franka Emika, Germany) are the sensors used. As in a typical I4 sense, as decided to 

simulate an environment that contains multiple sensors. Thus, as used data derived directly from 

machines (robot cinematics) and data collected from the supervising sensors such as leap motion 

and ArUco marker. As picked a ring for avoiding problems due to object manipulation such as 

the robot's incorrect grip. Using a device allows one to expand the experiment to instances where 

hazardous objects are mounted or are not appropriate for human interaction. The setup is shown 

in Figure 2c which highlights the sensors used and the task's salient points. The experiment is 

outlined as follows: in a first step, the ring is selected by a human operator using a device to 

avoid direct hand contact. The consumer then moves it to an arbitrary location and releases the 

device. The second step includes the RealSense camera sensor's scene segmentation and ring 

recognition and then the robot picks the ring and positions it sub sequentially at the drop point, 

then releases the ring. When the job finishes robot returns to a ready location waiting for a new 

job to be performed. The Leap Motion data will describe the entire mission, recording hand 

motions, the location of the robot joints and the end-effector pose to capture the robot's motion, 

and the ArUco will monitor the ring's motions. These values are labelled in Table 1. The function 

was performed by a single human operator for 40 times. The data set and related detailed 

documentation can be found at gitlab.com/altairLab/ICRT.git 
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EVALUATION AND RESULT 

 

The VIT-MR dataset was evaluated using LOUO (Leave One User Out) methodology which 

consists of removing and using a user during the training process. That means the preparation 

and the examination are performed 18 times. As used leave k-out (with kk = 5) methodology for 

the ICRT dataset, which consists of leaving 5 samples in the training process and using them as 

samples. As the total number of trials was 40, this results in 8 split training. The values shown 

reflect the mean values with standard deviation for both datasets. For both datasets, as defined as 

macro/micro accuracy as metrics to benchmark the different methods. In our work classes the 

classification mark expected by the model is called process phases. Micro average is measured 

as the sum of total correct predictions across all classes and is advantageous for classification on 

unbalanced classes as it aggregates the contributions of all phases to calculate the sum metric in 

terms of precision while taking into account false positives. On the other hand, for each class 

macro accuracy is measured as the mean of the true positive values. Table 3 displays the findings 

obtained by application of the methods to the two datasets. The recorded data are collected trying 

to optimize the accuracy of microphones. 

 

Table 3. Result for Macro and Micro average accuracy for both datasets reported as 

mean betasen LOUO results. 

Method   Dataset  

 VIT-MR   ICRT   

 Micro 

Average 

Macro 

Average 

Time (s) Micro 

Average 

Macro 

Average 

Time (s) 

TDNN 69.76 53.85 1042 86.95 79.04 256.7 

Std ± 6.08 ± 3.508  ± 3.693 ± 4.902  

LSTM 60.86 42.35 34455 65.83 51.98 6367 

Std ± 8.60 ± 3.50  ± 13.18 ± 15.07  

RFC 62.16 42.7 753.69 86.92 80.32 81.98 

Std ± 8.914 ± 3.792  ± 3.558 ± 5.126  

SVM 54.55 32.11 264.82 41.19 6.865 15.31 

Std ± 10.42 ± 5.254  ±1.72 ±0.28  

 

Fig. 3. Normalized confusion matrix for (a) ICRT and (b) VIT-MR datasets. Colour 

indicates the accuracy for each class as represented by the scalar number. Higher colour 

intensity in the diagonal of the matrix correspond to higher accuracy results of the model. 

Colour intensity are normalized with the maximum and minimum values for each dataset. 

Class indexes are referred in Table 2. 
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CONCLUSION 

 

Table 3 findings show the TDNN network has an outstanding ability to adapt to task recognition 

that outperforms the other approaches considered. The TDNN's robustness is proven by the 

accuracy obtained on both datasets. The significant difference for VIT-MR dataset between 

micro and macro accuracy is due to phase distribution imbalances. This is seen as the difference 

varies from a minimum of 16 per cent for TDNN to a maximum of 22 per cent for SVM and thus 

assumes a significant value for each presented process. This statement is not true for ICRT 

dataset, as it provides more balanced distribution of phases. Most of the VIT-MR dataset's wrong 

recognitions occur between one step and its corresponding class of errors. The normalized 

confusion matrix shown in Figure 3 clearly reflects this fact. The difference in accuracy in phase 

recognition is also provided by the form of motion and sensor that more determines each phase. 

For robotic movements the best recognition output is obtained (Fig 3a last 3 labels) accompanied 

by human operator (Fig 3 first 3 labels of both datasets). The proposed method obtains low 

recognition efficiency when used for error detection, as shown by results from the last 3 VIT-

MR labels in Fig3b. This implies that an APM-trained network is not suitable for recognizing 

errors that require more knowledge, perhaps of a higher level (such as those that are extracted 

from the environmental camera). As reported the calculation times of each method in Table 3 

including the sum of training and prediction time for a single run. This measurement time is 

critical for evaluating the ability of various APM methods to be implemented on novel IMS plants 

with minimal effect on setup time and therefore costs. 
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